27,453 research outputs found

    Chemical Evolution of the Carina Dwarf Spheroidal

    Full text link
    We explore a range of chemical evolution models for the Local Group dwarf spheroidal (dSph) galaxy, Carina. A novel aspect of our work is the removal of the star formation history (SFH) as a `free parameter' in the modeling, making use, instead, of its colour-magnitude diagram (CMD)-constrained SFH. By varying the relative roles of galactic winds, re-accretion, and ram-pressure stripping within the modeling, we converge on a favoured scenario which emphasises the respective roles of winds and re-accretion. While our model is successful in recovering most elemental abundance patterns, comparable success is not found for all the neutron capture elements. Neglecting the effects of stripping results in predicted gas fractions approximately two orders of magnitude too high, relative to that observed.Comment: Accepted for publication in PoS (Proceedings of Science): Nuclei in the Cosmos XII (Cairns, Aug 2012); 6 pages; 4 figure

    Simulating a White Dwarf-dominated Galactic Halo

    Full text link
    Observational evidence has suggested the possibility of a Galactic halo which is dominated by white dwarfs (WDs). While debate continues concerning the interpretation of this evidence, it is clear that an initial mass function (IMF) biased heavily toward WD precursors (1 < m/Msol < 8), at least in the early Universe, would be necessary in generating such a halo. Within the framework of homogeneous, closed-box models of Galaxy formation, such biased IMFs lead to an unavoidable overproduction of carbon and nitrogen relative to oxygen (as measured against the abundance patterns in the oldest stars of the Milky Way). Using a three-dimensional Tree N-body smoothed particle hydrodynamics code, we study the dynamics and chemical evolution of a galaxy with different IMFs. Both invariant and metallicity-dependent IMFs are considered. Our variable IMF model invokes a WD-precursor-dominated IMF for metallicities less than 5% solar (primarily the Galactic halo), and the canonical Salpeter IMF otherwise (primarily the disk). Halo WD density distributions and C,N/O abundance patterns are presented. While Galactic haloes comprised of ~5% (by mass) of WDs are not supported by our simulations, mass fractions of ~1-2% cannot be ruled out. This conclusion is consistent with the present-day observational constraints.Comment: accepted for publication in MNRA

    Observationally-Motivated Analysis of Simulated Galaxies

    Get PDF
    The spatial and temporal relationships between stellar age, kinematics, and chemistry are a fundamental tool for uncovering the physics driving galaxy formation and evolution. Observationally, these trends are derived using carefully selected samples isolated via the application of appropriate magnitude, colour, and gravity selection functions of individual stars; conversely, the analysis of chemodynamical simulations of galaxies has traditionally been restricted to the age, metallicity, and kinematics of `composite' stellar particles comprised of open cluster-mass simple stellar populations. As we enter the Gaia era, it is crucial that this approach changes, with simulations confronting data in a manner which better mimics the methodology employed by observers. Here, we use the \textsc{SynCMD} synthetic stellar populations tool to analyse the metallicity distribution function of a Milky Way-like simulated galaxy, employing an apparent magnitude plus gravity selection function similar to that employed by the RAdial Velocity Experiment (RAVE); we compare such an observationally-motivated approach with that traditionally adopted - i.e., spatial cuts alone - in order to illustrate the point that how one analyses a simulation can be, in some cases, just as important as the underlying sub-grid physics employed.Comment: Accepted for publication in PoS (Proceedings of Science): Nuclei in the Cosmos XIII (Debrecen, Jul 2014); 6 pages; 3 figure

    High-resolution N-body Simulations of Galactic Cannibalism: The Magellanic Stream

    Full text link
    Hierarchical clustering represents the favoured paradigm for galaxy formation throughout the Universe; due to its proximity, the Magellanic system offers one of the few opportunities for astrophysicists to decompose the full six-dimensional phase-space history of a satellite in the midst of being cannibalised by its host galaxy. The availability of improved observational data for the Magellanic Stream and parallel advances in computational power has led us to revisit the canonical tidal model describing the disruption of the Small Magellanic Cloud and the consequent formation of the Stream. We suggest improvements to the tidal model in light of these recent advances.Comment: 6 pages, 4 figures, LaTeX (gcdv.sty). Refereed contribution to the 5th Galactic Chemodynamics conference held in Swinburne, July 2003. Accepted for publication in PASA. Version with high resolution figures available at http://astronomy.swin.edu.au/staff/tconnors/publications.htm

    Galactic Archaeology and Minimum Spanning Trees

    Get PDF
    Chemical tagging of stellar debris from disrupted open clusters and associations underpins the science cases for next-generation multi-object spectroscopic surveys. As part of the Galactic Archaeology project TraCD (Tracking Cluster Debris), a preliminary attempt at reconstructing the birth clouds of now phase-mixed thin disk debris is undertaken using a parametric minimum spanning tree (MST) approach. Empirically-motivated chemical abundance pattern uncertainties (for a 10-dimensional chemistry-space) are applied to NBODY6-realised stellar associations dissolved into a background sea of field stars, all evolving in a Milky Way potential. We demonstrate that significant population reconstruction degeneracies appear when the abundance uncertainties approach 0.1 dex and the parameterised MST approach is employed; more sophisticated methodologies will be required to ameliorate these degeneracies.Comment: To appear in "Multi-Object Spectroscopy in the Next Decade: Big Questions, Large Surveys and Wide Fields"; Held: Santa Cruz de La Palma, Canary Islands, Spain, 2-6 Mar 2015; ed. I Skillen & S. Trager; ASP Conference Series (Figures now optimised for B&W printing
    • …
    corecore